Rotational Motion Question 85

Question: Point masses $ m _1 $ and $ m _2 $ are placed at the opposite ends of a rigid rod of length L and negligible mass. The rod is to be set rotating about an axis perpendicular to it. The position of point P on this rod through which the axis should pass, so that the work required to set the rod rotating with angular velocity $ {\omega_0} $ is minimum, is given by

Options:

A) $ x=\frac{m _1L}{m _1+m _2} $

B) $ x=\frac{m _1}{m _2}L $

C) $ x=\frac{m _2}{m _1}L $

D) $ x=\frac{m _2L}{m _1+m _2} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • As two point masses $ m _1 $ and $ m _2 $ are placed at opposite ends of a rigid rod of length L and negligible mass .

    Total moment of inertia of the rod

    $ I=m _1x^{2}+m _2{{(L-x)}^{2}} $

    $ I=m _1x^{2}+m _2L^{2}+m _2x^{2}-2m _2Lx $

    As, $ I $ is minimum i.e.

    $ \frac{dI}{dx}=2m _1x+0+2xm _2-2m _2L=0 $

    $ \Rightarrow $ $ x(2m _1+2m _2)=2m _2L $

    $ \Rightarrow $ $ x=\frac{m _2L}{m _1+m _2} $

    When $ I $ is minimum, then work done on rotating a rod $ 1/2I{{\omega }^{2}} $ with angular velocity $ {\omega_0} $ will be minimum.

    Shortcut Way The position of point P on rod through which the axis should pass, so that the work required to set the rod rotating with minimum angular velocity $ {\omega_0} $ is their centre of mass, we have

    $ m _1x=m _2(L-x)\Rightarrow x=\frac{m _2L}{m _1+m _2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें