Rotational Motion Question 86
Question: A force $ \mathbf{F}=\alpha \mathbf{\hat{i}}+3\mathbf{\hat{j}}+6\mathbf{\hat{k}} $ is acting at a point $ \mathbf{r}=2\mathbf{\hat{i}}-6\mathbf{\hat{j}}-12\mathbf{\hat{k}} $ . The value of a for which angular momentum about origin is conserved is
Options:
A) - 1
B) 2
C) zero
D) 1
Show Answer
Answer:
Correct Answer: A
Solution:
- 
Key Concept When the resultant external torque acting on a system is zero, the total angular momentum of a system remains constant. This is the principle of the conservation of angular momentum. Given, force $ \mathbf{F}=\alpha \mathbf{\hat{i}}+3\mathbf{\hat{j}}+6\mathbf{\hat{k}} $ is acting at a point $ \mathbf{r}=2\mathbf{\hat{i}}-6\mathbf{\hat{j}}-12\mathbf{\hat{k}} $ As, angular momentum about origin is conserved. i.e.$ \tau = $ constant Torque, $ \tau =0\Rightarrow \mathbf{r}\times \mathbf{F}=0 $ $ \begin{vmatrix} {\mathbf{\hat{i}}} & {\mathbf{\hat{j}}} & {\mathbf{\hat{k}}} \\ 2 & -6 & -12 \\ \alpha & 3 & 6 \\ \end{vmatrix} =0 $ $ \Rightarrow $ $ (-36+36)\mathbf{\hat{i}}-(12+12\alpha )\mathbf{\hat{j}}+(6+6\alpha )\mathbf{\hat{k}}=0 $ So value of a for angular momentum about origin is conserved, $ \alpha =-1 $ . 
 BETA
  BETA 
             
             
           
           
           
          