Rotational Motion Question 86

Question: A force $ \mathbf{F}=\alpha \mathbf{\hat{i}}+3\mathbf{\hat{j}}+6\mathbf{\hat{k}} $ is acting at a point $ \mathbf{r}=2\mathbf{\hat{i}}-6\mathbf{\hat{j}}-12\mathbf{\hat{k}} $ . The value of a for which angular momentum about origin is conserved is

Options:

A) - 1

B) 2

C) zero

D) 1

Show Answer

Answer:

Correct Answer: A

Solution:

  • Key Concept When the resultant external torque acting on a system is zero, the total angular momentum of a system remains constant.

    This is the principle of the conservation of angular momentum.

    Given, force $ \mathbf{F}=\alpha \mathbf{\hat{i}}+3\mathbf{\hat{j}}+6\mathbf{\hat{k}} $ is acting at a point $ \mathbf{r}=2\mathbf{\hat{i}}-6\mathbf{\hat{j}}-12\mathbf{\hat{k}} $

    As, angular momentum about origin is conserved.

    i.e.$ \tau = $ constant

    Torque, $ \tau =0\Rightarrow \mathbf{r}\times \mathbf{F}=0 $

    $ \begin{vmatrix} {\mathbf{\hat{i}}} & {\mathbf{\hat{j}}} & {\mathbf{\hat{k}}} \\ 2 & -6 & -12 \\ \alpha & 3 & 6 \\ \end{vmatrix} =0 $

    $ \Rightarrow $ $ (-36+36)\mathbf{\hat{i}}-(12+12\alpha )\mathbf{\hat{j}}+(6+6\alpha )\mathbf{\hat{k}}=0 $

    So value of a for angular momentum about origin is conserved, $ \alpha =-1 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें