Thermodynamics Question 301

Question: The efficiency of an ideal gas with adiabatic exponent $ ‘\gamma ’ $ for the shown cyclic process would be

Options:

A) $ \frac{( 2l\text{n}2-1 )}{\gamma /( \gamma -1 )} $

B) $ \frac{( 1-2l\text{n}2 )}{\gamma /( \gamma -1 )} $

C) $ \frac{( 2l\text{n}2+1 )}{\gamma /( \gamma -1 )} $

D) $ \frac{( 2l\text{n}2-1 )}{\gamma /( \gamma +1 )} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ W _{AB}=0,W _{BC}=P\Delta V=nR\Delta T=-nRT _{0} $

$ W _{CA}=nRT\ell n\frac{V _{f}}{V _{i}}=nR(2T _{0})\ell n2 $

$ Q _{BC}=nC _{p}\Delta T=( \frac{nR\gamma }{\gamma -1} )T _{0} $

$ \text{Efficieancy, }\eta =\frac{W}{Q}=[ \frac{2\ell n2-1}{\gamma /( \gamma -1 )} ] $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें