Thermodynamics Question 237

Question: An insulated container of gas has two chambers separated by an insulating partition. One of the chambers has volume $ V _{1} $ and contains ideal gas at pressure $ P _{1} $ , and temperature $ T _{1} $ The other chamber has volume $ V _{2} $ and contains ideal gas at pressure $ P _{2} $ and temperature $ T _{2} $ If the partition is removed without doing any work on the gas, the final equilibrium temperature of the gas in the container will be

Options:

A) $ \frac{T _{1}T _{2}( P _{1}V _{1}+P _{2}V _{2} )}{P _{1}V _{1}+P _{2}V _{2}} $

B) $ \frac{P _{1}V _{1}T _{2}+P _{2}V _{2}T _{1}}{P _{1}V _{1}+P _{2}V _{2}} $

C) $ \frac{P _{1}V _{1}T _{2}+P _{2}V _{2}T _{1}}{P _{1}V _{1}+P _{2}V _{2}} $

D) $ \frac{T _{1}T _{2}( P _{1}V _{1}+P _{2}V _{2} )}{P _{1}V _{1}T _{1}+P _{2}V _{2}T _{2}} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Here $ Q=0 $ and $ W=0. $

Therefore from the first law of thermodynamics $ \Delta U=Q-W=0 $

$ \therefore $ Internal energy of the system with partition = Internal energy of the system without partition. $ n _{1}C _{v}T _{1}+n _{2}C _{v}T _{2}=( n _{1}+n _{2} )C {v}T{\text{final}} $

$ \therefore T=\frac{n _{1}T _{1}+n _{2}T _{2}}{n _{1}+n _{2}} $

$ \text{But }n _{1}=\frac{P _{1}V _{1}}{RT _{1}}\text{ and }n _{2}=\frac{P _{2}V _{2}}{RT _{2}} $

$ \therefore T=\frac{\frac{P _{1}V _{1}}{RT _{1}}\times T _{1}+\frac{P _{2}V _{2}}{RT _{2}}\times T _{2}}{\frac{P _{1}V _{1}}{RT _{1}}+\frac{P _{2}V _{2}}{RT _{2}}}=\frac{T _{1}T _{2}( P _{1}V _{1}+P _{2}V _{2} )}{P _{1}V _{1}T _{2}+P _{2}V _{2}T _{1}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें