Thermodynamics Question 253

Question: The relation between U, P and V for an ideal gas in an adiabatic process is given by relation $ U=a+bPV. $ Find the value of adiabatic exponent $ ( \gamma ) $ of this gas.

Options:

A) $ \frac{b+1}{b} $

B) $ \frac{b+1}{a} $

C) $ \frac{a+1}{b} $

D) $ \frac{a}{a+b} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ U=a+bPV $ ..(i)

In adiabatic change, $ dU=-dW=\frac{nR}{\gamma -1}( T _{2}-T _{1} )=\frac{nR}{\gamma -1}( dT ) $

$ \Rightarrow U=\int _{{}}^{{}}{dU}=\frac{nR}{\gamma -1}\int _{{}}^{{}}{dT} $

$ orU=( \frac{nR}{\gamma -1} )T+a=\frac{PV}{\gamma -1}+a $ .(ii)

Where a is the constant of integration.

Comparing (1) and (2), we get $ b=\frac{1}{\gamma -1}\Rightarrow \gamma =\frac{b+1}{b}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें