Thermodynamics Question 262

Question: A mass of diatomic gas $ (\gamma =1.4) $ at a pressure of 2 atmospheres is compressed adiabatically so that its temperature rises from $ 27{}^\circ C $ to $ 927{}^\circ C $ . The pressure of the gas in final state is

Options:

A) 28 atm

B) 68.7 atm

C) 256 atm

D) 8 atm

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ T _{1}=273+27=300K $

$ T _{2}=273+927=1200K $

For adiabatic process, $ {{P}^{1-\gamma }}{{T}^{\gamma }}=\text{constant}\Rightarrow \text{P} _{1}^{1-\gamma }T _{1}^{\gamma }=\text{P} _{2}^{1-\gamma }T _{2}^{\gamma } $

$ \Rightarrow {{( \frac{P _{2}}{P _{1}} )}^{1-\gamma }}={{( \frac{T _{1}}{T _{2}} )}^{\gamma }}\Rightarrow {{( \frac{P _{1}}{T _{2}} )}^{1-\gamma }}={{( \frac{T _{2}}{T _{1}} )}^{\gamma }} $

$ {{( \frac{P _{2}}{P _{1}} )}^{1-1.4}}={{( \frac{1200}{300} )}^{1.4}}\Rightarrow {{( \frac{P _{1}}{T _{2}} )}^{-0.4}}={{( 4 )}^{1.4}} $

$ {{( \frac{P _{2}}{P _{1}} )}^{0.4}}={{4}^{1.4}}\text{or, }P _{2}=P _{1}{{4}^{( \frac{1.4}{0.4} )}}=P _{1}{{4}^{( \frac{7}{2} )}} $

$ =P _{1}( 2^{7} )=2\times 128=256atm $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें