Thermodynamics Question 268

Question: Calculate the work done when 1 mole of a perfect gas is compressed adiabatically. The initial pressure and volume of the gas are $ 10^{5}N/m^{2} $ and 6 liter respectively. The final volume of the gas is 2 liters. Molar specific heat of the gas at constant volume is 3R/2.

[Given $ {{(3)}^{5/3}}=6.19 $ ]

Options:

A) -957 J

B) +957 J

C) -805 J

D) + 805 J.

Show Answer

Answer:

Correct Answer: A

Solution:

[a] For an adiabatic change $ P{{V}^{\gamma }}=constant $

$ P _{1}V _{1}^{\gamma }=P _{2}V _{2}^{\gamma } $

As molar specific heat of gas at constant volume $ C _{v}=\frac{3}{2}R $

$ C _{p}=C _{V}+R=\frac{3}{2}R+R=\frac{5}{2}R; $

$ \gamma =\frac{C _{p}}{C _{V}}=\frac{( 5/2 )R}{( 3/2 )R}=\frac{5}{3} $

$ \therefore $

From $ eq^{n}.( 1 ) $

$ P _{2}={{( \frac{V _{1}}{V _{2}} )}^{\gamma }}P _{1}={{( \frac{6}{2} )}^{5/3}}\times 10^{5}N/m^{2} $

$ ={{(3)}^{5/.3}}\times 10^{5}=6.19\times 10^{5}N/m^{2} $ Work done $ =\frac{1}{1-( 5/3 )} $

$ [ 6.19\times 10^{5}\times 2\times {{10}^{-3}}-{{10}^{-5}}6\times {{10}^{-3}} ] $

$ =-3\times 10^{2}\times 3.19=-957\text{ joules} $ [-ve sign shows external work done on the gas]



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें