Transmission Of Heat Question 110

Question: Two bodies $ A $ and $ B $ have thermal emissivities of 0.01 and 0.81 respectively. The outer surface areas of the two bodies are the same. The two bodies emit total radiant power at the same rate. The wavelength $ {\lambda _{B}} $ corresponding to maximum spectral radiancy in the radiation from $ B $ is shifted from the wavelength corresponding to maximum spectral radiancy in the radiation from $ A $ , by $ 1.00\mu m $ . If the temperature of $ A $ is $ 5802\ K $

[IIT 1994; DCE 1996]

Options:

A) The temperature of $ B $ is $ 1934\ K $

B) $ {\lambda _{B}}=1.5\mu m $

C) The temperature of $ B $ is $ 11604\ K $

D) The temperature of $ B $ is $ 2901\ K $

Show Answer

Answer:

Correct Answer: A

Solution:

According to Stefan’s law $ E=eA\sigma T^{4}\Rightarrow E _{1}=e _{1}A\sigma T _{1}^{4} $ and $ E _{2}=e _{2}A\sigma T _{2}^{4} $

$ \because $

$ E _{1}=E _{2} $

$ \

Therefore $ $ e _{1}T _{1}^{4}=e _{2}T _{2}^{4} $

$ \Rightarrow $ $ T _{2}={{( \frac{e _{1}}{e _{2}}T _{1}^{4} )}^{\frac{1}{4}}}={{( \frac{1}{81}\times {{(5802)}^{4}} )}^{\frac{1}{4}}} $

$ \Rightarrow $ $ T _{B}=1934\ K $ And, from Wein’s law $ {\lambda _{A}}\times T _{A}={\lambda _{B}}\times T _{B} $

$ \Rightarrow \frac{{\lambda _{A}}}{{\lambda _{B}}}=\frac{T _{B}}{T _{A}} $

$ \Rightarrow $ $ \frac{{\lambda _{B}}-{\lambda _{A}}}{{\lambda _{B}}}=\frac{T _{A}-T _{B}}{T _{A}} $

$ \Rightarrow $ $ \frac{1}{{\lambda _{B}}}=\frac{5802-1934}{5802}=\frac{3968}{5802}\Rightarrow {\lambda _{B}}=1.5\ \mu m $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें