Transmission Of Heat Question 125

Question: Five rods of same dimensions are arranged as shown in the figure. They have thermal conductivities K1, K2, K3, K4 and K5. When points A and B are maintained at different temperatures, no heat flows through the central rod if

[KCET 2002]

Options:

A) $ K _{1}=K _{4},\text{and},\ K _{2}=K _{3} $

B) $ K _{1}K _{4}=K _{2}K _{3} $

C) $ K _{1}K _{2}=K _{3}K _{4} $

D) $ \frac{K _{1}}{K _{4}}=\frac{K _{2}}{K _{3}} $

Show Answer

Answer:

Correct Answer: B

Solution:

For no current flow between C and D

$ {( \frac{Q}{t} )}_AC=( \frac{Q}{t} )_CB $

Therefore $ \frac{K _{1}A({\theta _{A}}-{\theta _{C}})}{l}=\frac{K _{2}A({\theta _{C}}-{\theta _{B}})}{l} $

Therefore $ \frac{{\theta _{A}}-{\theta _{C}}}{{\theta _{C}}-{\theta _{B}}}=\frac{K _{2}}{K _{1}} $ …(i)

Also $ (\frac{Q}{t})_AD=(\frac{Q}{t})_DB $

Therefore $ \frac{K _{3}A({\theta _{A}}-{\theta _{D}})}{l}=\frac{K _{4}A({\theta _{D}}-{\theta _{B}})}{l} $

Therefore $ \frac{{\theta _{A}}-{\theta _{D}}}{{\theta _{D}}-{\theta _{B}}}=\frac{K _{4}}{K _{3}} $ …(ii)

It is given that $ {\theta _{C}}={\theta _{D}}, $

hence from equation (i) and (ii) we get

$ \frac{K _{2}}{K _{1}}=\frac{K _{4}}{K _{3}} $

Therefore $ K _{1}K _{4}=K _{2}K _{3} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें