Transmission Of Heat Question 223

Question: The rectangular surface of area 8 cm $ \times $ 4cm of a black body at a temperature of $ 127^{o}C $ emits energy at the rate of E per second. If the length and breadth of the surface are each reduced to half of the initial value and the temperature is raised to $ 327^{o}C $ , the rate of emission of energy will become

[MP PET 2000]

Options:

A) $ \frac{3}{8}E $

B) $ \frac{81}{16}E $

C) $ \frac{9}{16}E $

D) $ \frac{81}{64}E $

Show Answer

Answer:

Correct Answer: D

Solution:

$ {{(Q)} _{Black,body}}=A\sigma T^{4}t $

Therefore $ \frac{Q}{t}\propto $

$ P=A\sigma T^{4} $ Breadth are halved so area becomes one fourth.

Therefore $ \frac{P _{1}}{P _{2}}=\frac{A _{1}}{A _{2}}\times {{( \frac{T _{1}}{T _{2}} )}^{4}} $

Therefore $ \frac{A _{1}}{(A _{1}/4)}\times ( \frac{273+327}{273+127} ) $

Therefore $ P _{2}=\frac{81}{64}E $