Transmission Of Heat Question 328

Question: Two rods having thermal conductivities in the ratio of 5 : 3 having equal lengths and equal cross-sectional area are joined in series. If the temperature of the free end of the first rod is $ 100^{o}C $ and free end of the second rod is $ 20^{o}C $ . Then temperature of the junction is

Options:

A) $ ~70^{o}C $

B) $ ~60^{o}C $

C) $ 50^{o}C $

D) $ 90^{o}C $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Temperature of interface $ \theta =\frac{k _{1}{\theta _{1}}+k _{2}{\theta _{2}}}{k _{1}+k _{2}} $ It is given that $ \frac{K _{1}}{K _{2}}=\frac{5}{3} $ Let $ K _{1}=5K $ and $ K _{2}=3K $

$ \Rightarrow $ $ \theta =\frac{5K\times 100+3K\times 20}{5K+3K} $

$ \Rightarrow $ $ \theta =\frac{560K}{8K}=70{{,}^{o}}C $

$ \

Therefore $ $ \theta =70{{,}^{o}}C $