Transmission Of Heat Question 341

Question: A rod of length i and cross section area A has a variable thermal conductivity given by $ k=\alpha T, $ where a is a positive constant and T is temperature in kelvin. Two ends of the rod are maintained at temperatures $ T _{1} $ and $ T _{2}(T _{1}>T _{2}) $ . Heat current flowing through the rod will be

Options:

A) $ \frac{A\alpha (T _{1}^{2}-T _{2}^{2})}{\ell } $

B) $ \frac{A\alpha (T _{1}^{2}+T _{2}^{2})}{\ell } $

C) $ \frac{A\alpha (T _{1}^{2}+T _{2}^{2})}{3\ell } $

D) $ \frac{A\alpha (T _{1}^{2}-T _{2}^{2})}{2\ell } $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Heat current $ i=-kAdT $ $ id=-kA,dT $ $ i\int\limits _{0}^{\ell }{dx}=-A\alpha \int\limits _{T _{1}}^{T _{2}}{T}dT $

$ \Rightarrow $ $ i,\ell =-A,\alpha \frac{( T _{2}^{2}-T _{1}^{2} )}{2} $

$ \Rightarrow $ $ i=\frac{\Alpha \alpha ( T _{1}^{2}-T _{2}^{2} )}{2\ell } $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें