Vectors Question 130

Question: If $ \overrightarrow{A}\times \overrightarrow{B}=\overrightarrow{C}, $ then which of the following statements is wrong

Options:

A) $ \overrightarrow{C},\bot ,\overrightarrow{A} $

B) $ \overrightarrow{C},\bot ,\overrightarrow{B} $

C) $ \overrightarrow{C},\bot ,(\overrightarrow{A}+\overrightarrow{B}) $

D) $ \overrightarrow{C},\bot ,(\overrightarrow{A}\times \overrightarrow{B}) $

Show Answer

Answer:

Correct Answer: D

Solution:

From the property of vector product, we notice that $ \overrightarrow{C} $ must be perpendicular to the plane formed by vector $ \overrightarrow{A} $ and $ \overrightarrow{B} $ . Thus $ \overrightarrow{C} $ is perpendicular to both $ \overrightarrow{A} $ and $ \overrightarrow{B} $ and $ (\overrightarrow{A}+\overrightarrow{B}) $ vector also, must lie in the plane formed by vector $ \overrightarrow{A} $ and $ \overrightarrow{B} $ . Thus $ \overrightarrow{C} $ must be perpendicular to $ (\overrightarrow{A}+\overrightarrow{B}) $ also but the cross product $ (\overrightarrow{A}\times \overrightarrow{B}) $ gives a vector $ \overrightarrow{C} $ which can not be perpendicular to itself. Thus the last statement is wrong.