Vectors Question 130

Question: If $ \overrightarrow{A}\times \overrightarrow{B}=\overrightarrow{C}, $ then which of the following statements is wrong

Options:

A) $ \overrightarrow{C},\bot ,\overrightarrow{A} $

B) $ \overrightarrow{C},\bot ,\overrightarrow{B} $

C) $ \overrightarrow{C},\bot ,(\overrightarrow{A}+\overrightarrow{B}) $

D) $ \overrightarrow{C},\bot ,(\overrightarrow{A}\times \overrightarrow{B}) $

Show Answer

Answer:

Correct Answer: D

Solution:

From the property of vector product, we notice that $ \overrightarrow{C} $ must be perpendicular to the plane formed by vector $ \overrightarrow{A} $ and $ \overrightarrow{B} $ . Thus $ \overrightarrow{C} $ is perpendicular to both $ \overrightarrow{A} $ and $ \overrightarrow{B} $ and $ (\overrightarrow{A}+\overrightarrow{B}) $ vector also, must lie in the plane formed by vector $ \overrightarrow{A} $ and $ \overrightarrow{B} $ . Thus $ \overrightarrow{C} $ must be perpendicular to $ (\overrightarrow{A}+\overrightarrow{B}) $ also but the cross product $ (\overrightarrow{A}\times \overrightarrow{B}) $ gives a vector $ \overrightarrow{C} $ which can not be perpendicular to itself. Thus the last statement is wrong.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें