Vectors Question 135
Question: If $ |{{\overrightarrow{V}}_1}+{{\overrightarrow{V}}_2}|,=,|{{\overrightarrow{V}}_1}-{{\overrightarrow{V}}_2}| $ and $ V_2 $ is finite, then
[CPMT 1989]
Options:
A) $ V_1 $ is parallel to $ V_2 $
B) $ {{\overrightarrow{V}}_1}={{\overrightarrow{V}}_2} $
C) $ V_1 $ and $ V_2 $ are mutually perpendicular
D)                                  $ |{{\overrightarrow{V}}_1}|,=,|{{\overrightarrow{V}}_2}| $
 Correct Answer: C According to problem  $ |{{\vec{V}}_1}+{{\vec{V}}_2}|\ =\ |{{\vec{V}}_1}-{{\vec{V}}_2}| $ Therefore  $ |{{\vec{V}} _{net}}|\ =\ |{{\vec{{V}’}} _{net}}| $                  So  $ V_1 $  and  $ V_2 $  will be mutually perpendicular.Show Answer
  Answer:
Solution:
 BETA
  BETA 
             
             
           
           
           
          