Vectors Question 135

Question: If $ |{{\overrightarrow{V}}_1}+{{\overrightarrow{V}}_2}|,=,|{{\overrightarrow{V}}_1}-{{\overrightarrow{V}}_2}| $ and $ V_2 $ is finite, then

[CPMT 1989]

Options:

A) $ V_1 $ is parallel to $ V_2 $

B) $ {{\overrightarrow{V}}_1}={{\overrightarrow{V}}_2} $

C) $ V_1 $ and $ V_2 $ are mutually perpendicular

D) $ |{{\overrightarrow{V}}_1}|,=,|{{\overrightarrow{V}}_2}| $

Show Answer

Answer:

Correct Answer: C

Solution:

According to problem $ |{{\vec{V}}_1}+{{\vec{V}}_2}|\ =\ |{{\vec{V}}_1}-{{\vec{V}}_2}| $

Therefore $ |{{\vec{V}} _{net}}|\ =\ |{{\vec{{V}’}} _{net}}| $ So $ V_1 $ and $ V_2 $ will be mutually perpendicular.