Vectors Question 15
Question: Let $ \overrightarrow{C}=\overrightarrow{A}+\overrightarrow{B} $ then
Options:
$ |\overrightarrow{C}| $ is always greater than $ |\overrightarrow{A}| $
B) It is possible to have $ |\overrightarrow{C}|<|\overrightarrow{A}| $ and $ |\overrightarrow{C}|<|\overrightarrow{B}| $
C) C is not always equal to A + B
D) C is never equal to A + B
Show Answer
Answer:
Correct Answer: B
Solution:
$ \vec{B}=\vec{C}+\vec{A} $ . The value of C lies between $ |\vec{A}| - |\vec{B}| $ and $ |\vec{A}| + |\vec{B}| $ = $ |\vec{C}|\ <\ |\vec{A}| + |\vec{B}| $ and $ |\vec{C}|\ >\ ||\vec{A}| - |\vec{B}|| $