Vectors Question 15

Question: Let $ \overrightarrow{C}=\overrightarrow{A}+\overrightarrow{B} $ then

Options:

A) $ |\overrightarrow{C|} $ is always greater then $ |\overrightarrow{A}| $

B) It is possible to have $ |\overrightarrow{C}|<|\overrightarrow{A}| $ and $ |\overrightarrow{C}|<|\overrightarrow{B}| $

C) C is always equal to A + B

D) C is never equal to A + B

Show Answer

Answer:

Correct Answer: B

Solution:

$ \vec{C}+\vec{A}=\vec{B} $ . The value of C lies between $ A-B $ and $ A+B $ = $ |\vec{C}|\ <\ |\vec{A}|\ \ and\ \ |\vec{C}|\ <\ |\vec{B}| $