Vectors Question 155

Question: The position vectors of points A, B, C and D are $ A=3\hat{i}+4\hat{j}+5\hat{k},B=4\hat{i}+5\hat{j}+6\hat{k},C=7\hat{i}+9\hat{j}+3\hat{k} $ and $ D=4\hat{i}+6\hat{j} $ then the displacement vectors AB and CD are

Options:

A) Perpendicular

B) Parallel

C) Antiparallel

D) Inclined at an angle of $ 60{}^\circ $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \overrightarrow{AB}=(4\hat{i}+5\hat{j}+6\hat{k})-(3\hat{i}+4\hat{j}+5\hat{k}) $ = $ \hat{i}+\hat{j}+\hat{k} $

$ \overrightarrow{CD}=(4\hat{i}+6\hat{j})-(7\hat{i}+9\hat{j}+3\hat{k}) $

$ =-3\hat{i}-3\hat{j}-3\hat{k} $

$ \overrightarrow{AB} $ and $ \overrightarrow{CD} $ are parallel, because their cross-product is 0.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें