Vectors Question 173

Question: A force $ \vec{F}=3\hat{i}+c\hat{j}+2\hat{k} $ acting on a particle causes a displacement $ \vec{S}=-4\hat{i}+2\hat{j}-3\hat{k} $ in its own direction. If the work done is 6J, then the value of c will be

[DPMT 1997]

Options:

A) $ {{( A^{2}+B^{2}+\frac{AB}{\sqrt{3}} )}^{1/2}} $

B) $ A+B $

C) $ {{(A^{2}+B^{2}+\sqrt{3}AB)}^{1/2}} $

D) $ {{(A^{2}+B^{2}+AB)}^{1/2}} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ |,\overrightarrow{A}\times \overrightarrow{B}|,=\sqrt{3}(\overrightarrow{A}.\overrightarrow{B}) $

$ AB\sin \theta =\sqrt{3}AB\cos \theta $
$ \Rightarrow $ $ \tan \theta =\sqrt{3} $ \ $ \theta =60{}^\circ $ Now $ |\overrightarrow{R}|,=,|\overrightarrow{A}+\overrightarrow{B}|,=\sqrt{A^{2}+B^{2}+2AB\cos \theta } $

$ =\sqrt{A^{2}+B^{2}+2AB( \frac{1}{2} )} $

$ ={{(A^{2}+B^{2}+AB)}^{1/2}} $