Vectors Question 19

Question: The resultant of two vectors A and B is perpendicular to the vector A and its magnitude is equal to half the magnitude of vector B. The angle between A and B is

Options:

A) $ 120{}^\circ $

B) $ 150{}^\circ $

C) $ 135{}^\circ $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{B}{2}=\sqrt{A^{2}+B^{2}+2AB\ \cos \theta } $ ?(i) \ $ \tan 90{}^\circ =\frac{B\sin \theta }{A+B\cos \theta }\Rightarrow A+B\cos \theta =0 $ \ $ \cos \theta =-\frac{A}{B} $ Hence, from (i) $ \frac{B^{2}}{4}=A^{2}+B^{2}-2A^{2}\Rightarrow A=\sqrt{3}\frac{B}{2} $

Therefore $ \cos \theta =-\frac{A}{B}=-\frac{\sqrt{3}}{2} $ \ $ \theta =150{}^\circ $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें