Vectors Question 19

Question: The resultant of two vectors A and B is perpendicular to the vector A and its magnitude is equal to half the magnitude of vector B. The angle between A and B is

Options:

A) $ 120{}^\circ $

B) $ 150{}^\circ $

C) $ 135{}^\circ $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{B}{2}=\sqrt{A^{2}+B^{2}+2AB\ \cos \theta } $ ?(i) \ $ \tan 90{}^\circ =\frac{B\sin \theta }{A+B\cos \theta }\Rightarrow A+B\cos \theta =0 $ \ $ \cos \theta =-\frac{A}{B} $ Hence, from (i) $ \frac{B^{2}}{4}=A^{2}+B^{2}-2A^{2}\Rightarrow A=\sqrt{3}\frac{B}{2} $

Therefore $ \cos \theta =-\frac{A}{B}=-\frac{\sqrt{3}}{2} $ \ $ \theta =150{}^\circ $