Vectors Question 194
Question: Two forces $ {{\vec{F}}_1}=10\hat{i}-\hat{j}-15\hat{k} $ and $ {{\vec{F}}_2}=10\hat{i}-\hat{j}-15\hat{k} $ act on a single point. The angle between $ {{\vec{F}}_1} $ and $ {{\vec{F}}_2} $ is nearly
Options:
A) $ 30^{o} $
B) $ 45^{o} $
C) $ 60^{o} $
D)  $ 90^{o} $
 Correct Answer: B $ \cos \theta =\frac{{{{\vec{F}}}_1}\cdot{{{\vec{F}}}_2}}{|{{{\vec{F}}}_1}|,|{{{\vec{F}}}_2}|} $
$ =\frac{(5\hat{i}+10\hat{j}-20\hat{k})\cdot (10\hat{i}-5\hat{j}-15\hat{k})}{\sqrt{25+100+400}\cdot \sqrt{100+25+225}} $
$ =\frac{50-50+300}{\sqrt{525}\cdot \sqrt{350}} $ $ \Rightarrow  $  $ \cos \theta =\frac{1}{\sqrt{2}} $ $ \ Therefore  $ \theta = 45^\circ $Show Answer
  Answer:
Solution:
 BETA
  BETA 
             
             
           
           
           
          