Vectors Question 198
Question: The resultant of $ \vec{A} $ and $ \vec{B} $ is $ {{\vec{R}}_1} $ . On reversing the vector $ \vec{B}, $ the resultant becomes $ {{\vec{R}}_2} $ . What is the value of $ R_1^{2},+,R_2^{2},? $
Options:
A) $ A^{2}+,B^{2} $
B) $ A^{2}-B^{2} $
C) $ 2(A^{2}+,B^{2}) $
D) $ 2(A^{2}-,B^{2}) $
Correct Answer: C [c] $ R_1^{2},=,A^{2}+,B^{2}+,2,AB,\cos \theta $ $ R_2^{2},=,A^{2}+,B^{2}-,2,AB,\cos \theta $ Therefore $ $ R_1^{2},+,R_2^{2},=2,(A^{2}+B^{2}) $Show Answer
Answer:
Solution:
$ \