Vectors Question 200

Question: What is correct?

Options:

A) $ |\vec{a}-\vec{b}|,=|\vec{a}|-|\vec{b}| $

B) $ |\vec{a}-\vec{b}|,\le |\vec{a}|-|\vec{b}| $

C) $ |\vec{a}-\vec{b}|,\ge |\vec{a}|-|\vec{b}| $

D) $ |\vec{a}-\vec{b}|,<|\vec{a}|-|\vec{b}| $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] $ \vec{a}-,\vec{b} $ is nothing but addition of $ \vec{a} $ and $ -\vec{b} $ . So, the magnitude of $ \vec{a}-\vec{b} $ will lie between $ |\vec{a}|+,|\vec{b}| $ and $ |\vec{a}|,-|\vec{b}| $ .