Vectors Question 205

Question: Obtain the directions of vector $ (\vec{A},-\vec{B}), $ if $ \vec{A}=2\hat{i}+3\hat{j}=,\hat{k},\vec{B},=2\hat{i}+2\hat{j}+3\hat{k} $

Options:

A) $ 0,,\frac{1}{\sqrt{5}},,,\frac{-2}{\sqrt{5}} $

B) $ 0,,\frac{1}{\sqrt{5}},,,\frac{1}{\sqrt{5}} $

C) 0, 0, $ \frac{1}{\sqrt{5}} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ (\vec{A}-\vec{B})=\sqrt{1+4}=\sqrt{5} $ $ (\vec{A}-\vec{B})=,2\hat{i}+3\hat{j}+,\hat{k},-2\hat{i}-2\hat{j}-3\hat{k} $ $ =\hat{j}-2\hat{k} $ $ |\vec{A}-\vec{B}|=\sqrt{1+4}=,\sqrt{5} $ Direction cosine $ =,\frac{0}{\sqrt{5}},,\frac{1}{\sqrt{5}},,-\frac{2}{\sqrt{5}} $ i.e., $ =,0,,\frac{1}{\sqrt{5}},,-\frac{2}{\sqrt{5}} $ .