Vectors Question 208

Question: The value of $ \hat{i},\times ,(\hat{i}\times ,\vec{a}),+\hat{j},\times ,(\hat{j}+\vec{a}),+\hat{k}+(,\hat{k}\times \hat{a}) $ is

Options:

A) $ \vec{a} $

B) $ \vec{a},\times ,\hat{k} $

C) $ -2\vec{a} $

D) $ -,\vec{a} $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Suppose $ \vec{a},=a_1,\hat{i}+,a_2\hat{j}+,a_3\hat{k} $ Now, $ (\hat{i}\times ,\vec{a}),=a_2,\hat{k},-a_3\hat{j} $ Now, $ \hat{i}\times ,(\hat{i}\times ,\vec{a}),=-a_2,\hat{j}-a_2\hat{k} $ Similarly, $ \hat{j}\times ,(\hat{j}\times ,\vec{a})=-a_1i6-a_3\hat{k}, $ and $ \hat{k},\times ,(\hat{k}\times ,\vec{a}),=-a_1,\hat{i}-a_2\hat{j} $

$ \

Therefore $ $ \hat{i},\times ,(\hat{i}\times \vec{a}),+,\hat{j}\times ,(\hat{j}\times ,\vec{a}),+\vec{k},\times ,(\hat{k}\times ,\vec{a})=-2\vec{a}. $