Vectors Question 219
Question: If three vectors along coordinate axes represent the adjacent sides of a cube of length b, then the unit vector along its diagonal passing through the origin will be
Options:
A) $ \frac{\hat{i},+,\hat{j},+,\hat{k}}{\sqrt{2}} $
B) $ \frac{\hat{i},+,\hat{j},+,\hat{k}}{\sqrt{3b}} $
C) $ \hat{i},+,\hat{j},+,\hat{k} $
D) $ \frac{\hat{i},+,\hat{j},+,\hat{k}}{\sqrt{3}} $
Correct Answer: D [d] Diagonal vector $ \vec{A},=b\hat{i}+b\hat{j}+b\hat{k} $
or $ A=\sqrt{b^{2}+b^{2}+b^{2}},=,\sqrt{3},b $ $ \ Therefore $ $ \hat{A}=\frac{{\vec{A}}}{A}=,\frac{\hat{i}+\hat{j}+,\hat{k}}{\sqrt{3}} $ $ \ Therefore $ $ \hat{A},=\frac{{\vec{A}}}{A}=,\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}} $Show Answer
Answer:
Solution: