Vectors Question 4

Question: If the sum of two unit vectors is a unit vector, then magnitude of difference is

[CPMT 1995; CBSE PMT 1989]

Options:

A) $ \sqrt{2} $

B) $ \sqrt{3} $

C) $ 1/\sqrt{2} $

D) $ \sqrt{5} $

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ {{\hat{n}}_1} $ and $ {{\hat{n}}_2} $ are the two unit vectors, then the sum is $ {{\overrightarrow{n}} _{s}}={{\hat{n}}_1}+{{\hat{n}}_2} $ or $ n_s^{2}=n_1^{2}+n_2^{2}+2n_1n_2\cos \theta $

$ =1+1+2\cos \theta $ Since it is given that $ n _{s} $ is also a unit vector,

Therefore $ 1=1+1+2\cos \theta $

Therefore $ \cos \theta =-\frac{1}{2} $ \ $ \theta =120{}^\circ $ Now the difference vector is $ {{\hat{n}} _{d}}={{\hat{n}}_1}-{{\hat{n}}_2} $ or $ n_d^{2}=n_1^{2}+n_2^{2}-2n_1n_2\cos \theta $

$ =1+1-2\cos (120{}^\circ ) $ \ $ n_d^{2}=2-2(-1/2)=2+1=3 $
$ \Rightarrow n _{d}=\sqrt{3} $