Vectors Question 84

Question: A force $ \overrightarrow{F}=-K(y\hat{i}+x\hat{j}) $ (where K is a positive constant) acts on a particle moving in the x-y plane. Starting from the origin, the particle is taken along the positive x- axis to the point (a, 0) and then parallel to the y-axis to the point (a, a). The total work done by the forces $ \overrightarrow{F} $ on the particle is

[IIT-JEE 1998]

Options:

A) $ -2,Ka^{2} $

B) $ 2,Ka^{2} $

C) $ -Ka^{2} $

D) $ Ka^{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

For motion of the particle from (0, 0) to (a, 0) $ \overrightarrow{F}=-K(0,\hat{i}+a,\hat{j}) $
$ \Rightarrow \overrightarrow{F}=-Ka\hat{j} $ Displacement $ \overrightarrow{r,}=(a,\hat{i}+0,\hat{j})-(0,\hat{i}+0,\hat{j})=a\hat{i} $ So work done from (0, 0) to (a, 0) is given by $ W=\overrightarrow{F},.,\overrightarrow{r,} $

$ =-Ka\hat{j},.,a\hat{i}=0 $ For motion (a, 0) to (a, a) $ \overrightarrow{F}=-K(a\hat{i}+a\hat{j}) $ and displacement $ \overrightarrow{r,}=(a\hat{i}+a\hat{j})-(a\hat{i}+0\hat{j})=a\hat{j} $ So work done from (a, 0) to (a, a) $ W=\overrightarrow{F},.,\overrightarrow{r,} $

$ =-K(a\hat{i}+a\hat{j}),.,a\hat{j}=-Ka^{2} $ So total work done $ =-Ka^{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें