Vectors Question 93

Question: If $ \overrightarrow{A}=2\hat{i}+4\hat{j}-5\hat{k} $ the direction of cosines of the vector $ \overrightarrow{A} $ are

Options:

A) $ \frac{2}{\sqrt{45}},\frac{4}{\sqrt{45}},and,\frac{-,5}{\sqrt{45}} $

B) $ \frac{1}{\sqrt{45}},\frac{2}{\sqrt{45}},and,\frac{3}{\sqrt{45}} $

C) $ \frac{4}{\sqrt{45}},,0,and,\frac{4}{\sqrt{45}} $

D) $ \frac{3}{\sqrt{45}},\frac{2}{\sqrt{45}},and,\frac{5}{\sqrt{45}} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \vec{A}=2\hat{i}+4\hat{j}-5\hat{k} $ \ $ |\overrightarrow{A}|,=\sqrt{{{(2)}^{2}}+{{(4)}^{2}}+{{(-5)}^{2}}},=,\sqrt{45} $ \ $ \cos \alpha =\frac{2}{\sqrt{45}},,\cos \beta =\frac{4}{\sqrt{45}},\cos \gamma =\frac{-5}{\sqrt{45}} $