Wave Mechanics Question 590

Question: Masses $ M _{A} $ and $ M _{B} $ hanging from the ends of strings of lengths $ L _{A} $ and $ L _{B} $ are executing simple harmonic- motions. If their frequencies are $ f _{A}=2f _{B} $ , then

Options:

A) $ L _{A}=2L _{B},and,M _{A}=M _{B}/2 $

B) $ L _{A}=4L _{B} $ regardless of masses

C) $ L _{A}=L _{B}/4 $ regardless of masses

D) $ L _{A}=2L _{B},and,M _{A}=2M _{B} $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ f _{A}=\frac{1}{2\pi }\sqrt{\frac{g}{L _{A}}} $ and $ f _{B}=\frac{f _{A}}{2}=\frac{1}{2\pi }\sqrt{\frac{g}{L _{B}}} $
$ \

Therefore \frac{f _{A}}{f _{A}/2}=\frac{1}{2\pi }\sqrt{\frac{g}{L _{A}}}\times 2\pi \sqrt{\frac{L _{B}}{g}}\Rightarrow 2=\sqrt{\frac{L _{B}}{L _{A}}} $
$ \Rightarrow ,4=\frac{L _{B}}{L _{A}}, $ regardless of mass.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें