Wave Mechanics Question 595

Question: A small ball of density $ 4{\rho _{0}} $ is released from rest just below the surface of a liquid. The density of liquid increases with depth as $ \rho ={\rho _{0}}(1+ay) $ where $ a=2{{m}^{-1}} $ is a constant. Find the time period of its oscillation. (Neglect the viscosity effects).

Options:

A) $ \frac{2\pi }{\sqrt{5}}\sec $

B) $ \frac{\pi }{\sqrt{5}}\sec $

C) $ \frac{\pi }{2\sqrt{5}}\sec $

D) $ \frac{3\pi }{2\sqrt{5}}\sec $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] In equilibrium position $ mg=F _{B}=\frac{m}{4{\rho _{0}}}{\rho _{0}}(1+ay _{0})g\Rightarrow 4=1+ay _{0} $

$ y _{0}=\frac{3}{2}=1.5 $ Now displace it downward by $ \Delta y $
$ \

Therefore F=mg-\frac{m}{4{\rho _{0}}}{\rho _{0}}[1+a(y _{0}+\Delta y)]g $

$ =mg-\frac{mg}{4}[1+ay _{0}+a\Delta y] $

$ F=-\frac{mga}{4}\Delta y; $ Acceleration $ =-( \frac{ag}{4} )\Delta y $
$ \

Therefore T=\frac{2\pi }{\omega }=2\pi \sqrt{\frac{4}{ag}}=\frac{2\pi }{\sqrt{5}}\sec . $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें