Wave Mechanics Question 603

Question: A particle of mass m is attached to a spring (of spring constant k) and has a natural angular frequency $ {\omega _{0}} $ . An external force F (t) proportional to $ \cos ,\omega t(\omega \ne {\omega _{0}}) $ is applied to the oscillator. The displacement of the oscillator will be proportional to

Options:

A) $ \frac{1}{m(\omega _{0}^{2}+{{\omega }^{2}})} $

B) $ \frac{1}{m(\omega _{0}^{2}-{{\omega }^{2}})} $

C) $ \frac{m}{\omega _{0}^{2}-{{\omega }^{2}}} $

D) $ \frac{m}{(\omega _{0}^{2}+{{\omega }^{2}})} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ x=A,\sin (\omega t+\phi ) $

Where $ A=\frac{F _{0}}{m\sqrt{{{(\omega _{0}^{2}-{{\omega }^{2}})}^{2}}}}=\frac{F _{0}}{m(\omega _{0}^{2}-{{\omega }^{2}})} $

Here damping effect is considered to be zero

$ \

Therefore ,x\propto \frac{1}{m({\omega _{0}}^{2}-{{\omega }^{2}})} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें