Wave Mechanics Question 609

Question: The amplitude of velocity of a particle is given by, $ V _{m}=V _{0}/(a{{\omega }^{2}}-b\omega +c) $ where $ V _{0} $ , a, b and c are positive: The condition for a single resonant frequency is

Options:

A) $ b^{2}<4ac $

B) $ b^{2}=4ac $

C) $ b^{2}=5ac $

D) $ b^{2}=7ac $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ V _{m}=V _{0}/(a{{\omega }^{2}}-b\omega +c) $ If there is a single resonant frequency, then this equation should be satisfied for only one that particular resonant frequency, hence $ a{{\omega }^{2}}-b\omega +c=0 $ will have equal roots therefore; $ D=0\Rightarrow {{(-b)}^{2}}-4ac=0\Rightarrow b^{2}=4ac $ particular resonant frequency, hence $ a{{\omega }^{2}}-b\omega +c=0 $ will have equal roots therefore; $ D=0\Rightarrow {{(-b)}^{2}}-4ac=0\Rightarrow b^{2}=4ac $