Wave Mechanics Question 650

Question: The length of the wire between two ends of asonometer is 100 cm. What should be the positions of two bridges below the wire so that the three segments of the wire have their fundamental frequencies in the ratio of 1 : 3 : 5?

Options:

A) $ \frac{1500}{23}cm,\frac{2000}{23}cm $

B) $ \frac{1500}{23}cm,\frac{500}{23}cm $

C) $ \frac{1500}{23}cm,\frac{300}{23}cm $

D) $ \frac{300}{23}cm,\frac{1500}{23}cm $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] From formula, $ f=\frac{1}{x}\sqrt{\frac{T}{m}}\Rightarrow \frac{1}{f}\propto l $
$ \

Therefore l _{1}:l _{2}:l _{3}=\frac{1}{f _{1}}:\frac{1}{f _{2}}:\frac{1}{f _{3}}=f _{2}f _{3}:f _{1}f _{3}:f _{1}f _{2} $

$ [ Given:f _{1}:f _{2}:f _{3}=1:3:5 ] $ =15: 5: 3

Therefore the positions of two bridges below the wire are $ \frac{15\times 100}{15+5+3}cm,and,\frac{15\times 100+5\times 100}{15+5+3}cm $ i.e., $ \frac{1500}{23}cm,\frac{2000}{23}cm $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें