Wave Mechanics Question 654

Question: A sonometer wire of length 1.5 m is made of steel. The tension in it produces an elastic strain of 1%. What is the fundamental frequency of steel if density and elasticity of steel are $ 7.7\times 10^{3}kg/m^{3} $ and $ 2.2\times 10^{11}N/m^{2} $ respectively?

Options:

A) 188.5 Hz

B) 178.2 Hz

C) 200.5 Hz

D) 770 Hz

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Fundamental frequency, $ f=\frac{v}{2\ell }=\frac{1}{2\ell }\sqrt{\frac{T}{\mu }}=\frac{1}{2\ell }\sqrt{\frac{T}{A\rho }} $

$ ,[ \because v=\sqrt{\frac{T}{\mu }},and,\mu =\frac{m}{\ell } ] $ Also, $ Y=\frac{T\ell }{A\Delta \ell }\Rightarrow \frac{T}{A}=\frac{Y\Delta \ell }{\ell } $
$ \Rightarrow ,f=\frac{1}{2\ell }\sqrt{\frac{\gamma \Delta \ell }{\ell \rho }} $ ? (i) Putting the value of $ \ell ,,\frac{\Delta \ell }{\ell } $ , $ \rho $ and $ \gamma $ in $ eq^{n} $ . (i) we get, $ f=\sqrt{\frac{2}{7}}\times \frac{10^{3}}{3} $ or, $ f\approx 178.2Hz $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें