Wave Mechanics Question 533

Question: A circular tube of mean radius 8 cm and thickness 0.04 cm is melted up and recast into a solid rod of the same length. The ratio of the torsional rigidities of the circular tube and the solid rod is

Options:

A) $ \frac{{{(8.02)}^{4}}-{{(7.98)}^{4}}}{{{(0.8)}^{4}}} $

B) $ \frac{{{(8.02)}^{2}}-{{(7.98)}^{2}}}{{{(0.8)}^{2}}} $

C) $ \frac{{{(0.8)}^{2}}}{{{(8.02)}^{4}}-{{(7.98)}^{4}}} $

D) $ \frac{{{(0.8)}^{2}}}{{{(8.02)}^{3}}-{{(7.98)}^{2}}} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ C _{1}=\frac{\pi \eta (r _{2}^{4}-r _{1}^{4})}{2\ell },C _{2}=\frac{\pi \eta r^{4}}{2\ell } $ Initial volume = Final volume
$ \

Therefore ,\pi [r _{2}^{2}-r _{1}^{2}]\ell \rho =\pi r^{2}\ell \rho $
$ \Rightarrow r^{2}=r _{2}^{2}-r _{1}^{2}\Rightarrow r^{2}=(r _{2}+r _{1})(r _{2}-r _{1}) $
$ \Rightarrow r^{2}=(8.02+7.98)(8.02-7.98) $
$ \Rightarrow r^{2}=16\times 0.04=0.64cm\Rightarrow r=0.8cm $
$ \

Therefore ,\frac{C _{1}}{C _{2}}=\frac{r _{2}^{4}-r _{1}^{4}}{r^{4}}=\frac{{{[8.02]}^{4}}-{{[7.98]}^{4}}}{{{[0.8]}^{4}}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें