Wave Mechanics Question 1123

Question: A source of sound placed at the open end of a resonance column sends an acoustic wave of pressure amplitude $ {\rho _{0}} $ inside the tube. If the atmospheric pressure is $ {\rho _{A}}, $ then the ratio of maximum and minimum pressure at the closed end of the tube will be

[UPSEAT 2002]

Options:

A) $ \frac{({\rho _{A}}+{\rho _{0}})}{({\rho _{A}}-{\rho _{0}})} $

B) $ \frac{({\rho _{A}}+2{\rho _{0}})}{({\rho _{A}}-2{\rho _{0}})} $

C) $ \frac{{\rho _{A}}}{{\rho _{A}}} $

D) $ \frac{( {\rho _{A}}+\frac{1}{2}{\rho _{0}} )}{( {\rho _{A}}-\frac{1}{2}{\rho _{0}} )} $

Show Answer

Answer:

Correct Answer: A

Solution:

Maximum pressure at closed end will be atmospheric pressure adding with acoustic wave pressure So $ {\rho _{\max }}={\rho _{A}}+{\rho _{0}} $ and $ {\rho _{\min }}={\rho _{A}}-{\rho _{0}} $ Thus $ \frac{{\rho _{\max }}}{{\rho _{\min }}}=\frac{{\rho _{A}}+{\rho _{0}}}{{\rho _{A}}-{\rho _{0}}} $