Wave Mechanics Question 555

Question: Two simple harmonic motions are represented by the equations $ y _{1}=0.1\sin ( 100\pi t+\frac{\pi }{3} ) $ and $ y _{2}=0.1\cos \pi t $ . The phase difference of the velocity of particle 1 with respect to the velocity of particle 2 is

Options:

A) $ \frac{\pi }{3} $

B) $ \frac{-\pi }{6} $

C) $ \frac{\pi }{6} $

D) $ \frac{-\pi }{3} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ v _{1}=\frac{dy _{1}}{dt}=0.1\times 100\pi \cos ( 100\pi t+\frac{\pi }{3} ) $

$ v _{2}=\frac{dy _{2}}{dt}=-0.1\pi \sin \pi t $

$ =0.1\pi \cos ( \pi t+\frac{\pi }{2} ) $
$ \

Therefore Phase,diff.,={\phi _{1}}-{\phi _{2}}=\frac{\pi }{3}-\frac{\pi }{2}=\frac{2\pi -3\pi }{6}=\frac{\pi }{6} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें