Wave Mechanics Question 561

Question: A particle is executing simple harmonic motion with amplitude A. When the ratio of its kinetic energy to the potential energy is $ \frac{1}{4} $ , its displacement from its mean position is

Options:

A) $ \frac{2}{\sqrt{5}}A $

B) $ \frac{\sqrt{3}}{2}A $

C) $ \frac{3}{4}A $

D) $ \frac{1}{4}A $

Show Answer

Answer:

Correct Answer: A

Solution:

[a]
$ \

Therefore ,\frac{\frac{1}{2}m{{\omega }^{2}}(A^{2}-x^{2})}{\frac{1}{2}m{{\omega }^{2}}x^{2}}=\frac{1}{4}\Rightarrow \frac{A^{2}-x^{2}}{x^{2}}=\frac{1}{4} $

$ 4A^{2}-4x^{2}=x^{2}\Rightarrow x^{2}=\frac{4}{5}A^{2}\Rightarrow x=\frac{2}{\sqrt{5}}A. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें