Wave Mechanics Question 589

Question: A pendulum made of a uniform wire of cross sectional area A has time period T. When an additional mass M is added to its bob, the time period changes to $ T _{M} $ . If the Young’s modulus of the material of the wire is Y then $ \frac{1}{Y} $ is equal to: (g = gravitational acceleration)

Options:

A) $ [ 1-{{( \frac{T _{M}}{T} )}^{2}} ]\frac{A}{Mg} $

B) $ [ 1-{{( \frac{T}{T _{M}} )}^{2}} ]\frac{A}{Mg} $

C) $ [ {{( \frac{T _{M}}{T} )}^{2}}-1 ]\frac{A}{Mg} $

D) $ [ {{( \frac{T _{M}}{T} )}^{2}}-1 ]\frac{Mg}{A} $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] As we know, time period, $ T=2\pi \sqrt{\frac{\ell }{g}} $ When additional mass M is added then $ T _{M}=2\pi \sqrt{\frac{\ell +\Delta \ell }{g}} $

$ {T _{\frac{M}{T}}}=\sqrt{\frac{\ell +\Delta \ell }{\ell }},or,{{( \frac{T _{M}}{T} )}^{2}}=\frac{\ell +\Delta \ell }{\ell } $ or, $ {{( \frac{T _{M}}{T} )}^{2}}=1+\frac{Mg}{Ay} $

$ [ \

Therefore ,\Delta \ell =\frac{Mg\ell }{Ay} ] $
$ \

Therefore \frac{1}{y}=[ {{( \frac{T _{M}}{T} )}^{2}}-1 ]\frac{A}{Mg} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें