Work Energy And Power Question 278

Question: Three masses m, 2m and 3m are moving in x-y plane with speed 3u, 2u and u respectively as shown in figure. The three masses collide at the same point at P and stick together. The velocity of resulting mass will be

Options:

A) $ \frac{u}{12}( \hat{i}+\sqrt{3}\hat{j} ) $

B) $ \frac{u}{12}( \hat{i}-\sqrt{3}\hat{j} ) $

C) $ \frac{u}{12}( -\hat{i}+\sqrt{3}\hat{j} ) $

D) $ \frac{u}{12}( -\hat{i}-\sqrt{3}\hat{j} ) $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] From the law of conservation of momentum we know that,

$ {m_1}u_1+{m_2}u_2+…={m_1}{v_1}+{m_2}{v_2}+… $ Given $ {m_1}=m, m_2 =2m and m_3 = 3m $

and $ {u_1}=3u, u_2= 2u and u_3= u $

Let the velocity when they stick $ = \vec{v} $

Then, according to question, $ m\times 3u ( {\hat{i}} ) + 2m\times 2u ( -\hat{i}cos60{}^\circ -\hat{j}\sin 60{}^\circ ) $

$ +3m\times u ( -\hat{i}cos60{}^\circ +\hat{j}sin60{}^\circ ) =( m+2m+3m ) \vec{v} $

$ \Rightarrow 3mu\hat{i}-4mu\frac{{\hat{i}}}{2}4mu( \frac{\sqrt{3}}{2}\hat{j} )-3mu\frac{{\hat{i}}}{2} $

$ +3mu( \frac{\sqrt{3}}{2}\hat{j} )=6m\vec{v} $

$ \Rightarrow mu\hat{i}-\frac{3}{2}mu\hat{i}-\frac{\sqrt{3}}{2}mu\hat{j}=6m\vec{v} $

$ \Rightarrow -\frac{1}{2}mu\hat{i}-\frac{\sqrt{3}}{2}mu\hat{j}=6m\vec{v} $

$ \Rightarrow \vec{v}=\frac{u}{12}( -\hat{i}-\sqrt{3}\hat{j} ) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें