Work Energy And Power Question 304

Question: A body of mass M splits into two parts $ \alpha $ and $ (1-\alpha ) $ M by an internal explosion which generates kinetic energy T. After explosion if the two parts move in the same direction as before, their relative speed will be -

Options:

A) $ \sqrt{\frac{T}{(1-\alpha )M}} $

B) $ \sqrt{\frac{2T}{\alpha (1-\alpha )M}} $

C) $ \sqrt{\frac{T}{2(1-\alpha )M}} $

D) $ \sqrt{\frac{2T}{(1-a)M}} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Let the speed of the body before explosion be u.

After explosion, if the two parts move with velocities $ u_1 $

and $ u_2 $ in the same direction, then according to conservation of momentum,

Or $ Mu_1+( 1-\alpha )Mu^{2}=Mu $

The kinetic energy T liberated during explosion is given

by $ T=\frac{1}{2}\alpha Mu_1^{2}+\frac{1}{2}( 1-\alpha )Mu_2^{2}-\frac{1}{2}Mu^{2} $

$ =\frac{1}{2}\alpha Mu_1^{2}+\frac{1}{2}( 1-\alpha )Mu_2^{2}-\frac{1}{2M} $

$ {{[ \alpha Mu_1+( 1-\alpha )Mu_2 ]}^{2}} $

$ =\frac{1}{2}M\alpha ( 1-\alpha )[ u_1^{2}+u_2^{2}-2u_1u_2 ] $

$ {{( u_1-u_2 )}^{2}}=\frac{2T}{\alpha ( 1-\alpha )M} $

$ \Rightarrow ( u_1-u_2 )=\sqrt{\frac{2T}{\alpha ( 1-\alpha )M}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें