Work Energy And Power Question 308

Question: A force $ \overset{\to }{\mathop{F}}=-k(y\hat{i}+x\hat{j}) $ acts on a particle moving in the x -y plane. Starting from the origin, the particle is taken along the positive x-axis to the point (a, 0) and then parallel to the j’-axis to the point (a, a). The total work done by the force is

Options:

A) $ -2ka^{2} $

B) $ 2ka^{2} $

C) $ -ka^{2} $

D) $ ka^{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ W_1\int_0^{a}{\overset{\to }{\mathop{F}}.\overset{\to }{\mathop{dx}}}=\int_0^{a}{-k(y\hat{i}-x\hat{j}).\hat{i}dx} $

$ =\int_0^{a}{-k(0\hat{i}}+x\hat{j}).\hat{i}dx=zero $

$ W\int_0^{a}{\overset{\to }{\mathop{F}}.\overset{\to }{\mathop{dy}}}=\int_0^{a}{-k(y\hat{i}}+x\hat{j}).\hat{j}dy $

$ =\int_0^{a}{-k(a\hat{i}}+a\hat{j}).\hat{j}dy $

$ =-ka\int_0^{a}{dy=-ka^{2}} $

Total work done, $ W=W_1+W_2=0-ka^{2}=-ka^{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें