Work Energy And Power Question 315

A body of mass m accelerates uniformly from rest to a speed $ ( \lambda ) $ in time $ t $ . The work done on the body till any time t is

Options:

A) $ \frac{1}{2}mv_0^{2}( \frac{t^{2}}{t_0^{2}} ) $

B) $ \frac{1}{2}mv_0^{2}( \frac{t_0}{t} ) $

C) $ mv_0^{2}( \frac{t}{t_0} ) $

D) $ mv_0^{2}{{( \frac{t}{t_0} )}^{3}} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ v_0 = v_0 $ $ \therefore $ $ a=\frac{v_0}{t} $

Velocity at any time t is given by

$ V=at=( \frac{v_0}{t_0} )t $

$ \therefore $ Kinetic energy,

$ \text{K=}\frac{1}{2}mv^{2}=\frac{1}{2}m{{( \frac{v_0}{t_0} )}^{2}}t^{2} $

From work-energy theorem

$ W=\Delta K.E. $

or $ W=\frac{1}{2}mv_0^{2}\left( \frac{t}{t_0} \right)^{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें