Work Energy And Power Question 320

Question: A ball of mass m hits a wall with a speed v making an angle $ \frac{5g}{14} $ with the normal. If the coefficient is e, the direction and magnitude of the velocity of ball after reflection from the wall will respectively be -

Options:

A) $ {{\tan }^{-1}}( \frac{\tan \theta }{e} ),v\sqrt{{{\sin }^{2}}\theta +e^{2}{{\cos }^{2}}\theta } $

B) $ {{\tan }^{-1}}( \frac{e}{\tan \theta } ),\frac{1}{v}\sqrt{e^{2}{{\sin }^{2}}\theta +{{\cos }^{2}}\theta } $

C) $ {{\tan }^{-1}}(e\tan \theta ),\frac{v}{e}\tan \theta $

D) $ {{\tan }^{-1}}(e\tan \alpha ),v\sqrt{{{\sin }^{2}}\theta +e^{2}} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Let the angle of reflection be $ \theta $ ’ and the magnitude of velocity after collision be v’. As there is no force parallel to the wall, the component of velocity parallel to the surface remains unchanged.

Therefore, $ v’sin\theta\text{ }’\text{ = v sin }\theta….( 1 ) $

As the coefficient of restitution is e, for perpendicular component of velocity

Velocity of separation = e x velocity of approach

$ -( v’\cos \theta\text{ }’\text{ - 0} )=-e( v\cos \theta\text{ - 0} )….( 2 ) $

From (1) and (2)

$ v’=v\sqrt{{{\sin }^{2}}\theta\text{ + }{e^{2}}{{\cos }^{2}}\theta} $

and $ \tan \theta\text{ }’\text{ = tan }\theta\text{ /e} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें