Work Energy And Power Question 122

Question: Two particles having position vectors $ \overrightarrow{r_1}=(3\hat{i}+5\hat{j}) $ metres and $ \overrightarrow{r_2}=(-5\hat{i}-3\hat{j}) $ metres are moving with velocities $ {{\overrightarrow{v}}_1}=(4\hat{i}+3\hat{j})m/s $ and $ {{\overrightarrow{v}}_2}=(\alpha \hat{i}+7\hat{j}) $

$ m/s. $ If they collide after 2 seconds, the value of $ ‘\alpha ’ $ is [EAMCET 2003]

Options:

A) 2

B) 4

C) 6

D) 8

Show Answer

Answer:

Correct Answer: D

Solution:

It is clear from figure that the displacement vector $ \Delta \overrightarrow{r} $

between particles $ p_1 $ and $ p_2 $ is $ \Delta \overrightarrow{r}=\overrightarrow{r_2}-\overrightarrow{r_1}=-8\hat{i}-8\hat{j} $

$ |\Delta \overrightarrow{r}|=\sqrt{{{(-8)}^{2}}+{{(-8)}^{2}}}=8\sqrt{2} $ …(i)

Now, as the particles are moving in same direction $ (\because \ \overrightarrow{v_1}\text{ and }\overrightarrow{v_2}\text{ are }+ve) $ ,

the relative velocity is given by $ {{\overrightarrow{v}} _{rel}}=\overrightarrow{v_2}-\overrightarrow{v_1}=(\alpha -4)\hat{i}+4\hat{j} $

$ {{\overrightarrow{v}} _{rel}}=\sqrt{{{(\alpha -4)}^{2}}+16} $ …(ii)

Now, we know $ |{{\overrightarrow{v}} _{rel}}|=\frac{|\Delta \overrightarrow{r}|}{t} $

Substituting the values of $ {{\overrightarrow{v}} _{rel}} $ and $ |\Delta \overrightarrow{r}| $ from equation (i) and (ii) and $ t=2s $ , then on solving we get $ \alpha =8 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें