Work Energy And Power Question 63

Question: A particle of mass m is moving in a horizontal circle of radius r under a centripetal force equal to $ -K/r^{2} $ , where K is a constant. The total energy of the particle is [IIT 1977]

Options:

A) $ \frac{K}{2r} $

B) $ -\frac{K}{2r} $

C) $ -\frac{K}{r} $

D) $ \frac{K}{r} $

Show Answer

Answer:

Correct Answer: B

Solution:

Here $ \frac{mv^{2}}{r}=\frac{K}{r^{2}} $

K.E. $ =\frac{1}{2}mv^{2}=\frac{K}{2r} $

$ U=-\int _{\infty }^{r}{F.dr}=-\int _{\infty }^{r}{( -\frac{K}{r^{2}} )}dr=-\frac{K}{r} $

Total energy $ E=K\text{.E}\text{.}+P\text{.E}\text{.}=\frac{K}{2r}-\frac{K}{r}=-\frac{K}{2r} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें