Work Energy And Power Question 139

Question: A particle of mass m moves along a circular path of radius r with centripetal acceleration $ a _{n} $ changing with time t as $ a _{n}=kt^{2} $ , where k is-a positive constant. The average power developed by all the forces acting on the particle during the first $ t_0 $ seconds is

Options:

A) $ mkrt_0 $

B) $ \frac{mkrt_0^{2}}{2} $

C) $ \frac{mkrt_0^{{}}}{2} $

D) $ \frac{mkrt_0^{{}}}{4} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Given $ a _{n}=kt^{2} $

Or $ \frac{v^{2}}{r}=kt^{2} $

or $ v^{2}=krt^{2} $ Therefore, average power delivered = $ \frac{Totalworkdone}{Totaltimeelaped} $

$ =\frac{increaseinKE}{Totaltimeelapsed} $

Or $ =\frac{\frac{1}{2}m(v^{2}-0^{2})}{t_0}=\frac{m}{2}\frac{krt_0^{2}}{t_0}=\frac{mkrt_0^{2}}{2} $

Alternative: $ v=\sqrt{krt}\Rightarrow a _{t}=\sqrt{kr} $

$ P=F _{t}v=ma _{t}v=mkrt $

$ =\frac{\int\limits_0^{t_0}{Pdt}}{t_0}=\frac{1}{2}mkrt_0^{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें