Work Energy And Power Question 146

Question: When a rubber-band is stretched by a distance $ x $ , it exerts a restoring force of magnitude $ F=ax+bx^{2} $ , where a and b are constants. The work done in stretching the unstretched rubber band by $ L $ is,

Options:

A) $ \frac{aL^{2}}{2}+\frac{bL^{3}}{3} $

B) $ \frac{1}{2}( \frac{aL^{2}}{2}+\frac{bL^{3}}{3} ) $

C) $ aL^{2}+bL^{3} $

D) $ \frac{1}{2}(aL^{2}+aL^{3}) $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Restoring force on rubber-band, $ F=ax+bx^{2} $

Work done in stretching the rubber-band by a small amount $ dx,dW=Fdx $

Net work done in stretching the rubber-band by L is

$ W=\int{dW=\int\limits_0^{L}{Fdx=\int\limits_0^{L}{(ax+bx^{2})dx}}} $

$ \Rightarrow W={{[ a\frac{x^{2}}{2}+b\frac{x^{3}}{3} ]}_0}^{L}=\frac{aL^{2}}{2}+\frac{bL^{3}}{3} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें