Work Energy And Power Question 173

Question: A bullet of mass m moving with velocity v strikes a block of mass M at rest and gets embedded into it. The kinetic energy of the composite block will be [MP PET 2002]

Options:

A) $ \frac{1}{2}mv^{2}\times \frac{m}{(m+M)} $

B) $ \frac{1}{2}mv^{2}\times \frac{M}{(m+M)} $

C) $ \frac{1}{2}mv^{2}\times \frac{(M+m)}{M} $

D) $ \frac{1}{2}Mv^{2}\times \frac{m}{(m+M)} $

Show Answer

Answer:

Correct Answer: A

Solution:

By conservation of momentum, $ mv+M\times 0=(m+M)V $

Velocity of composite block $ V=( \frac{m}{m+M} )v $

K.E. of composite block $ =\frac{1}{2}(M+m)V^{2} $

$ =\frac{1}{2}(M+m){{( \frac{m}{M+m} )}^{2}}v^{2}=\frac{1}{2}mv^{2}( \frac{m}{m+M} ) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें