Linear Programming Mock Test Linear Inequalities Question 16
Question: The system $ 2(2x+3)-10<6(x-2) $ and $ \frac{2x-3}{4}+\ge \frac{2+4x}{3} $ has
Options:
A) infinite
B) two solutions
C) three sollutionns
D) no solutions
Answer:
Correct Answer: A
Solution:
[a] Let
$ 2(2x+3)-10<6(x-2)\ldots (1) $
$ \frac{2x-3}{4}+6\ge \frac{2+4x}{3}\ldots (2) $
$ (1)\Rightarrow 4x+6-10-6x+12<0 $
$ \Rightarrow -2x+8<0 $
$ \Rightarrow -2x<-8\Rightarrow x>4i.e.,x\in (4,\infty ) $ $ (2)\Rightarrow \frac{2x-3+24}{4}\ge \frac{2+4x}{3} $
$ \Rightarrow 6x+63\ge 8+16x $
$ \Rightarrow 6x-16\ge 8-63 $
$ \Rightarrow -10x\ge -55 $
$ \Rightarrow x\le \frac{55}{10}i.e.,x\in ( -\infty ,\frac{55}{10} ] $ Solution set is given by $ ( -\infty ,\frac{55}{10} ]\cap (4,\infty )=( 4,\frac{55}{10} ] $ Thus, the system has infinitely solution.