title: “Lata knowledge-route-Class10-Math1-2 Merged.Pdf(1)” type: “reveal” weight: 1

LINEAR EQUATIONS IN TWO VARIABLES I

LINEAR EQUATIONS IN TWO VARIABLES I

2.1 LINEAR EQUATIONS IN TWO VARIABLES :

An equation of the form $Ax+By+C=0$ is called a linear equation.

Where A is called coefficient of $x, B$ is called coefficient of $y$ and $C$ is the constant term (free form $x & y$ )

A, B, C, $\in R[\in \to$ belongs, to $R \to$ Real No. $]$

But $A$ and $B$ ca not be simultaneously zero.

If $A \neq 0, B=0$ equation will be of the form $A x+C=0$. [Line || to Y-axis]

If $A=0, B \neq 0$, equation will be of the form $By+C=0$.

If $A \neq 0, B \neq 0, C=0$ equation will be of the form $A x+B y=0$. [Line || to X-axis]

If $A \neq 0, B \neq C, C \neq 0$ equation will be of the form $A x+B y+C=0$. [Line passing through origin]

It is called a linear equation in two variable because the two unknown ( $x & y$ ) occurs only in the first power, and the product of two unknown equalities does not occur.

Since it involves two variable therefore a single equation will have infinite set of solution i.e. indeterminate solution. So we require a pair of equation i.e. simultaneous equations.

LINEAR EQUATIONS IN TWO VARIABLES I

Standard form of linear equation : (Standard form refers to all positive coefficient)

$a_1 x+b_1 y+c_1=0$ …(i)

$a_2 x+b_2 y+c_2=0$ …(ii)

For solving such equations we have three methods.

(i) Elimination by substitution $\quad$

(ii) Elimination by equating the coefficients

(iii) Elimination by cross multiplication.

LINEAR EQUATIONS IN TWO VARIABLES I

2.1 Elimination By Substitution :

Ex. 1 Solve $x+4 y=14 \ldots . .(i)$

$ 7 x-3 y=5 \ldots .\text { (ii) } $

LINEAR EQUATIONS IN TWO VARIABLES I

Sol. From equation (i) $x=14-4 y$ …(iii)

Substitute the value of $x$ in equation (ii)

$ \begin{matrix} \Rightarrow & 7(14-4 y)-3 y=5 & \Rightarrow & 98-28 y-3 y=5 \\ \Rightarrow & 98-31 y=5 \quad \Rightarrow \quad 93=31 y & \Rightarrow & y=\frac{93}{31} \Rightarrow y=3 \end{matrix} $

Now substitute value of $y$ in equation (iii)

$ \begin{matrix} \Rightarrow & 7 x-3(3)=5 & \Rightarrow & 7 x-3(3)=5 \\ \Rightarrow & 7 x=14 & \Rightarrow & x=\frac{14}{7}=2 \quad \text { So, solution is } x=2 \text { and } y=3 \end{matrix} $

LINEAR EQUATIONS IN TWO VARIABLES I

2.1 (b) Elimination by Equating the Coefficients :

Ex. 2 Solve $9 x-4 y=8 \ldots .$. (i)

$ 13 x+7 y=101 \ldots \text { (ii) } $

LINEAR EQUATIONS IN TWO VARIABLES I

Sol. Multiply equation (i) by 7 and equation (ii) by 4 , we get

$ \begin{matrix} \text { Add } & 63 x-28 y & =56\\ & 52 x+28 y & =404 \end{matrix} $

$ 115 x \quad=460 $ $ \Rightarrow \quad x=\frac{460}{115} \Rightarrow x=4 $

Substitute $x=4$ in equation (i)

$ 9(4)-4 y=8 \quad \Rightarrow \quad 36-8=4 y \quad \Rightarrow \quad 28=4 y \Rightarrow \quad y=\frac{28}{4}=7 $

So, solution is $x=4$ and $y=7$.

LINEAR EQUATIONS IN TWO VARIABLES I

2.1 (c) Elimination by Cross Multiplication :

$a_1 x+b_1 y+c_1=0$

$a_2 x+b_2 y+c_2=0$ $ \quad [\because \frac{a_1}{a_2} \neq \frac{b_1}{b_2}] $

alt text

$\frac{x}{b_1 c_2-b_2 c_1}=\frac{y}{a_2 c_1-a_1 c_2}=\frac{1}{a_1 b_2-a_2 b_1} \Rightarrow \therefore \frac{x}{b_1 c_2-b_2 c_1}=\frac{1}{a_1 b_2-a_2 b_1}$

$\Rightarrow \quad x=\frac{b_1 c_2-b_2 c_1}{a_1 b_2-a_2 b_1}$

Also, $\frac{y}{a_2 c_1-a_1 c_2}=\frac{1}{a_1 b_2-a_2 b_1} \quad \therefore \quad y=\frac{a_2 c_1-a_1 c_2}{a_1 b_2-a_2 b_1}$

LINEAR EQUATIONS IN TWO VARIABLES I

Ex 3. Solve $ 3x+2y+25=0$ …(i)

$x+y+15=0$ …(ii)

LINEAR EQUATIONS IN TWO VARIABLES I

Sol. Here, $a_1=3 \ b_1=2, \ c_1=25$

$ a_2=1 \ b_2=1,\ c_2=15 $

$ \frac{x}{2 \times 15-25 \times 1}=\frac{y}{25 \times 1-15 \times 3}=\frac{1}{3 \times 1-2 \times 1} ; \frac{x}{30-25}=\frac{y}{25-45}=\frac{1}{3-2} $

$\frac{x}{5}=\frac{y}{-20}=\frac{1}{1}$ …(i)

$ \frac{x}{5}=1, \frac{y}{-20}=\frac{1}{1} $

$ X=5, y=-20 \quad \text { So, solution is } x=5 \text { and } y=-20 \text {. } $

LINEAR EQUATIONS IN TWO VARIABLES I

2.2 CONDITIONS FOR SOLVABILITY (OR CONSISTENCY) OF SYSTEM OF EQUATIONS:

2.2 (a) Unique Solution :

Two lines $a_1+b_1 y+c_1=0$ and $a_2 x+b_2 y+c_2=0$, if the denominator $a_1 b_2-a_2 b_1 \neq 0$ then the given system of equations have unique solution (i.e. only one solution) and solutions are said to be consistent.

$\therefore \quad a_1 b_2-a_2 b_1 \neq 0 \quad \Rightarrow \quad \frac{a_1}{b_2} \neq \frac{b_1}{b_2}$

LINEAR EQUATIONS IN TWO VARIABLES I

2.2 (b) No Solution :

Two lines $a_1 x+b_1 y+c_1=0$ and $a_2 x+b_2 y+c_2=0$, if the denominator $a_1 b_2-a_2 b_1=0$ then the given system of equations have no solution and solutions are said to be consistent.

$\therefore \quad a_1 b_2-a_2 b_1 \neq 0 \Rightarrow \quad \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$

LINEAR EQUATIONS IN TWO VARIABLES I

2.2 (c) Many Solution (Infinite Solutions)

Two lines $a_1 x+b_1 y+c_1=0$ and $a_2 x+b_2 y+c_2=0$, if $\frac{a_1}{a_2}=\frac{b_1}{b_2}=-$ then system of equations has many solution and solutions are said to be consistent.

LINEAR EQUATIONS IN TWO VARIABLES I

Ex. 4 Find the value of ’ $P$ ’ for which the given system of equations has only one solution (i.e. unique solution). $P x-y=2$ $6 x-2 y=3$

LINEAR EQUATIONS IN TWO VARIABLES I

Sol. $\quad a_1=P,\ b_1=-1,\ c_1=-2$

$a_2=6\ b_2=-2,\ c_2=-3$

Conditions for unique solution is $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$

$\Rightarrow \quad \frac{P}{6} \neq \frac{+1}{+2} \quad \Rightarrow \quad P \neq \frac{6}{2} \Rightarrow \quad P \neq 3 \quad \therefore P$ can have all real values except 3 .

LINEAR EQUATIONS IN TWO VARIABLES I

Ex. 5 Find the value of $k$ for which the system of linear equation

$kx+4 y=k-4$

$16 x+k y=k$ has infinite solution.

LINEAR EQUATIONS IN TWO VARIABLES I

Sol. $\quad a_1=k,\ b_1=4,\ c_1=-(k-4)$

$a_2=16,\ b_2=k,\ c_2=-k$

Here condition is $\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$

$ \begin{aligned} & \Rightarrow \frac{k}{16}=\frac{4}{k}=\frac{(k-4)}{(k)} \quad \Rightarrow \quad \frac{k}{16}=\frac{4}{k} \text { also } \quad \frac{4}{k}=\frac{k-4}{k} \\ & \Rightarrow \quad k^{2}=64 \quad \Rightarrow \quad 4 k=k^{2}-4 k \\ & \Rightarrow k= \pm 8 \quad \Rightarrow \quad k(k-8)=0 \end{aligned} $

$k=0$ or $k=8$ but $k=0$ is not possible other wise equation will be one variable.

$\therefore \quad k=8$ is correct value for infinite solution.

LINEAR EQUATIONS IN TWO VARIABLES I

Ex. 6 Determine the value of $k$ so that the following linear equations has no solution.

$ \begin{aligned} & (3 x+1) x+3 y-2=0 \\ & (k^{2}+1) x+(k-2) y-5=0 \end{aligned} $

LINEAR EQUATIONS IN TWO VARIABLES I

Sol. Here $a_1=3 k+1, b_1=3$ and $c_1=-2$

$ a_2=k^{2}+1, b_2=k-2 \text { and } c_2=-5 $ For no solution, condition is $\frac{a_1}{a_2}=\frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

$\frac{3 k+1}{k^{2}+1}=\frac{3}{k-2} \neq \frac{-2}{-5}$ $\Rightarrow \quad \frac{3 k+1}{k^{2}+1}=\frac{3}{k-2}$ and $\frac{3}{k-2} \neq \frac{2}{5}$

Now, $\quad \frac{3 k+1}{k^{2}+1}=\frac{3}{k-2}$

$\Rightarrow(3 k+1)(k-2)=3(k^{2}+1)$ $\Rightarrow \quad 3 k^{2}-5 k-2=3 k^{2}+3$

$\Rightarrow-5 k-2=3$ $\Rightarrow \quad-5 k=5$

$\Rightarrow k=-1$ Clearly, $\frac{3}{k-2} \neq \frac{2}{5}$ for $k=-1$.

Hence, the given system of equations will have no solution for $k=-1$.

LINEAR EQUATIONS IN TWO VARIABLES I

DAILY PRACTIVE PROVBLEMS 2

OBJECTIVE DPP - 2.1

1. The equations $3 x-5 y+2=0$, and $6 x+4=10 y$ have :

(A) No solution $\quad$

(B) A single solution

(C) Two solutions $\quad$

(D) An infinite number of solution

LINEAR EQUATIONS IN TWO VARIABLES I

Que. 1
Ans. D

LINEAR EQUATIONS IN TWO VARIABLES I

2. If $p+q=1$ and the ordered pair (p, q) satisfy $3 x+2 y=1$ then is also satisfies :

(A) $3 x+4 y=5$ $\quad$

(B) $5 x+4 y=4$

(C) $5 x+5 y=4$ $\quad$

(D) None of these.

LINEAR EQUATIONS IN TWO VARIABLES I

Que. 2
Ans. A

LINEAR EQUATIONS IN TWO VARIABLES I

3. If $x=y, 3 x-y=4$ and $x+y+x=6$ then the value of $z$ is :

(A) 1 $\quad$

(B) 2

(C) 3 $\quad$

(D) 4

LINEAR EQUATIONS IN TWO VARIABLES I

Que. 3
Ans. B

LINEAR EQUATIONS IN TWO VARIABLES I

4. The system of linear equation $a x+b y=0, c x+d y=0$ has no solution if :

(A) ad - bc $>0$ $\quad$

(B) ad - bc $<0$

(C) $a d+b c=0$ $\quad$

(D) $ad-bc=0$

LINEAR EQUATIONS IN TWO VARIABLES I

Que. 4
Ans. D

LINEAR EQUATIONS IN TWO VARIABLES I

5. The value of $k$ for which the system $k x+3 y=7$ and $2 x-5 y=3$ has no solution is :

(A) $7 $& $k=-\frac{3}{14}$ $\quad$

(B) $4$ & $ k=\frac{3}{14}$

(C) $\frac{6}{5}$ & $k \neq \frac{14}{3}$ $\quad$

(D) $-\frac{6}{5}$ & $k \neq \frac{14}{3}$

LINEAR EQUATIONS IN TWO VARIABLES I

Que. 5
Ans. D

LINEAR EQUATIONS IN TWO VARIABLES I

6. If $29 x+37 y=103,37 x+29 y=95$ then:

(A) $x=1, y=2$ $\quad$

(B) $x=2, y=1$

(C) $x=2, y=3$ $\quad$

(D) $x=3, y=2$

LINEAR EQUATIONS IN TWO VARIABLES I

Que. 6
Ans. A

LINEAR EQUATIONS IN TWO VARIABLES I

7. On solving $\frac{25}{x+y}-\frac{3}{x-y}=1, \frac{40}{x+y}+\frac{2}{x-y}=5$ we get :

(A) $x=8, y=6$ $\quad$

(B) $x=4, y=6$

(C) $x=6, y=4$ $\quad$

(D) None of these

LINEAR EQUATIONS IN TWO VARIABLES I

Que. 7
Ans. C

LINEAR EQUATIONS IN TWO VARIABLES I

8. If the system $2 x+3 y-5=0,4 x+k y-10=0$ has an infinite number of solutions then :

(A) $k=\frac{3}{2}$ $\quad$

(B) $k \neq \frac{3}{2}$

(C) $k \neq 6$ $\quad$

(D) $k=6$

LINEAR EQUATIONS IN TWO VARIABLES I

Que. 8
Ans. D

LINEAR EQUATIONS IN TWO VARIABLES I

9. The equation $x+2 y=4$ and $2 x+y=5$

(A) Are consistent and have a unique solution $\quad$

(B) Are consistent and have infinitely many solution

(C) are inconsistent $\quad$

(D) Are homogeneous linear equations

LINEAR EQUATIONS IN TWO VARIABLES I

Que. 9
Ans. A

LINEAR EQUATIONS IN TWO VARIABLES I

10. If $\frac{1}{x}-\frac{1}{y}=\frac{1}{z}$ then $z$ will be :

(A) $y-x$ $\quad$

(B) $x-y$

(C) $\frac{y-x}{x y}$ $\quad$

(D) $\frac{x y}{y-x}$

LINEAR EQUATIONS IN TWO VARIABLES I

Que. 10
Ans. D

LINEAR EQUATIONS IN TWO VARIABLES I

SUBJECTIVE DPP 2.2

Solve each of the following pair of simultaneous equations.

1. $\frac{x}{3}+\frac{y}{12}=\frac{7}{2}$ and $\frac{x}{6}-\frac{y}{8}=\frac{6}{8}$

LINEAR EQUATIONS IN TWO VARIABLES I

Sol. 1. $x=9, y=6$

LINEAR EQUATIONS IN TWO VARIABLES I

2. $0.2 x+0.3 y=0.11=0$, $0.7 x-0.5 y+0.08=0$

LINEAR EQUATIONS IN TWO VARIABLES I

Sol. 2. $x=0.1,y=0.3 $

LINEAR EQUATIONS IN TWO VARIABLES I

3. $ 3 \sqrt{2} x-5 \sqrt{3} y+\sqrt{5}=0 ; \quad 2 \sqrt{3} x+7 \sqrt{2} y-2 \sqrt{5}=0$

LINEAR EQUATIONS IN TWO VARIABLES I

Sol. 3. $x=\frac{10 \sqrt{5}-7 \sqrt{10}}{72} y=\frac{2 \sqrt{15}+6 \sqrt{10}}{72}$

LINEAR EQUATIONS IN TWO VARIABLES I

4. $ \frac{x}{3}+y=1.7 \quad$ and $\frac{11}{x+\frac{y}{3}}=10 \forall[x+\frac{y}{3} \neq 0]$

LINEAR EQUATIONS IN TWO VARIABLES I

Sol. 4. $ x=0.6, y=1.5$

LINEAR EQUATIONS IN TWO VARIABLES I

5. Prove that the positive square root of the reciprocal of the solutions of the equations $\frac{3}{x}+\frac{5}{y}=29$ and $\frac{7}{x}-\frac{4}{y}=5(x \neq 0, y \neq 0)$ satisfy both the equation $2(\sqrt{3} x+4)-3(4 y-5)=5$ & $7(\frac{9 x}{\sqrt{3}}+8)+5(7 y-25)=64$

LINEAR EQUATIONS IN TWO VARIABLES I

6. For what value of $a$ and $b$, the following system of equations have an infinite no. of solutions. $2 x+3 y=7$; $(a-b) x+(a+b)+b-2$

LINEAR EQUATIONS IN TWO VARIABLES I

Sol. 6. $ a=5, b=1$

LINEAR EQUATIONS IN TWO VARIABLES I

7. Solve : (i) $\frac{7}{x^{3}}-\frac{6}{2^{y}}=15 ; \frac{8}{3^{x}}=\frac{9}{2^{y}}$ $\quad$ (ii) $119 x-381 y=643 ; 381 x-119 y=-143$

LINEAR EQUATIONS IN TWO VARIABLES I

Sol. 7. $ (i) x=-2, y=-3 (ii) x=-1, y=-2 $

LINEAR EQUATIONS IN TWO VARIABLES I

8. Solve: $\frac{b x}{a}-\frac{a y}{b}+a+b=0 ; b x-a y+2 a b=0$

LINEAR EQUATIONS IN TWO VARIABLES I

Sol. 8. $ x = - a, y = b $

LINEAR EQUATIONS IN TWO VARIABLES I

9. Solve : $\frac{1}{3 x}+\frac{1}{5 y}=1 ; \frac{1}{5 x}+\frac{1}{3 y}=1 \frac{2}{15}$

LINEAR EQUATIONS IN TWO VARIABLES I

Sol. 9. $x=\frac{2}{3}, y=\frac{2}{5}$

LINEAR EQUATIONS IN TWO VARIABLES I

10. Solve $x-y+z=6$

$ x-22 y-2 z=5 $

$ 2 x+y-3 z=1 $

LINEAR EQUATIONS IN TWO VARIABLES I

Sol. 10. $x = 3, y = - 2 , x = 1$

LINEAR EQUATIONS IN TWO VARIABLES I

11. Solve, $p x+q y=r$ and $q x=1+r$

LINEAR EQUATIONS IN TWO VARIABLES I

Sol. 11. $x=\frac{q+r(p+q)}{p^{2}+q^{2}}, y=\frac{r(q-p)-p}{p^{2}+q^{2}}$

LINEAR EQUATIONS IN TWO VARIABLES I

12. Find the value of $k$ for which the given system of equations

(A) has a Unique solution. $\quad$ (B) becomes consistent.

(i) $3 x+5 y=12$ $\quad$ (ii) $3 x-7 y=6$

$4 x-7 y=k$ $\quad$ $21 x-49 y=1-1$

LINEAR EQUATIONS IN TWO VARIABLES I

Sol. 12. (a) k is any real number (b) k = $41$

LINEAR EQUATIONS IN TWO VARIABLES I

13. Find the value of $k$ for which the following system of linear equation becomes infinitely many solution. or represent the coincident lines.

(i) $6 x+3 y=k-3$ $\quad$(ii) $x+2 y+7=0$

$2 k x+6 y=6$ $\quad$ $2 x+ky+14=0$

LINEAR EQUATIONS IN TWO VARIABLES I

Sol. 13. (a) $k=6(b) k=4$

LINEAR EQUATIONS IN TWO VARIABLES I

14. Find the value of $k$ or $C$ for which the following systems of equations be in consistent or no solution.

(i) $2 x ky+k+2=0$ $\quad$ (ii) $C x+3 y=3$

$kx+8 y+3 k=0$ $\quad$ $12 x+C y=6$

LINEAR EQUATIONS IN TWO VARIABLES I

Sol. 14. (a) k = $- 4 (b) C = - 6 $

LINEAR EQUATIONS IN TWO VARIABLES I

15. Solve for $x$ and $y$ : $(a-b) x+(a+b) y=a^{2}-2 a b-b^{2}$

$(a+b)(x+y)=a^{2}+b^{2}$

[CBSE - 2008]

LINEAR EQUATIONS IN TWO VARIABLES I

Sol. 15. $x=a+b, y=-\frac{2 ab}{a+b}$

LINEAR EQUATIONS IN TWO VARIABLES I

16. Solve for $x$ and $y$ :

$37 x+43 y=123$

$43 x+37 y=117$ $\quad$

[CBSE - 2008]

LINEAR EQUATIONS IN TWO VARIABLES I

Sol. 16. $x=1, y=2$



विषयसूची

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें